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Abstract: In this paper, subspace predictive control strategy is applied to design predictive controller. Given the state space 

model, the output estimations corresponding to the predictive output is derived to be one explicit function of the measured 

input-output data. Then using these output estimations, the problem of designing predictive controller is formulated as one 

optimization problem with equality and inequality conditions. In order to solve this constrain optimization problem, we use dual 

decomposition idea to change the original constrain optimization problem into an unconstrain optimization problem. So the 

classical gradient algorithm is put forth to solve the primal dual optimization problem. The problem of designing dual 

decomposition controller is studied for subspace predictive control strategy under fault condition. For state space equation with 

fault condition, we establish one function form between fault and residual using only input-output measured data sequence, and 

construct one least squares optimization problem to obtain fault estimation. The statistical property about residual is analyzed 

based on our derived output prediction, then the Kronecker product is used to derive the detailed structure corresponding to 

residual vector at every time instant. After substituting our output prediction into objective function of predictive control, one 

quadratic programming problem with equality and inequality constraints is considered. For solving this constrained optimization 

problem, fast gradient method is not suited for this complex optimization problem, as one regularization term is added in our 

objective function. So in order to solve this complex quadratic optimization problem, we propose a dual decomposition idea so 

that this dual decomposition idea can convert the former constrained optimization into unconstrained optimization, then one 

nearest neighbor gradient algorithm is given to solve its optimal value. 

Keywords: Subspace Predictive Control, Dual Decomposition, Gradient Algorithm 

 

1. Introduction 

Subspace predictive control is from the idea of subspace 

identification, whose goal is to construct one mathematical 

equation corresponding to the considered plant using only 

input-output measured sequence. During subspace 

identification process, each matrix in state space equation is 

identified by using the basic matrix singular value 

decomposition strategy, as this basic strategy is applied to 

decompose a matrix constituted by past and future 

input-output measured sequence. Instead subspace predictive 

control can construct the future prediction of output directly 

from input-output measured sequence, and avoid constructing 

the state space equation, i.e. state space equation is not needed 

to be identified from estimated state sequence. 

Subspace predictive control is one of special data driven 

control method, due to its combination with system 

identification and predictive control and its ability to obtain 

output prediction directly by measured sequence, which is 

very important in predictive control theory. The basic output 

prediction in subspace predictive control is proposed in [1], 

and [2] compares this output prediction and another value 

coming from iterative correction tuning control, and the 

equivalence between these two output predictions can be 

guaranteed through introducing one pre-filter. In [3], a novel 

subspace predictive control algorithm based on subspace 

identification was studied to solve actuator saturation 

limitations in a range of active vibration and noise control 

problems, and Meanwhile the subspace predictive control 

permitted limitations on allowable actuator saturation. An 
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upper bound of maximum number of possible iteration steps is 

derived in subspace predictive control, and the proposed 

subspace predictive control is realized in an example of 

helicopter [4]. When imposing the lower and upper bounds 

constraint conditions on the faults, a fast gradient method was 

applied to solve this problem, based on fault estimations the 

subspace predictive control was proposed to solve an 

optimization problem with linear matrix inequality 

constraints. 

2. Problem Description 

Consider the following stochastic discrete time state space 

model. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1x k Ax k Bu k Ef k Fw k

y k Cx k Du k Gf k v k

 + = + + +


= + + +
    (1) 

where equation (1) is a multi-input and multi-output state 

space model, and 

( ) ( ) ( ) ( ), , , fnn l mx k R y k R u k R f k R∈ ∈ ∈ ∈  

denote state variable, output, control variable and fault 

respectively. Matrices , , , , , ,A B C D E F G are real bounded 

matrices with approximate dimensions, and their dimensions 

are determined by the dimensions of matrices 

( ) ( ) ( )x k y k u k, ,  and ( ) ( ),w k v k . Disturbs include process 

noise ( ) wnw k R∈ and measurement noise ( ) lv k R∈ , further 

process noise ( ) wnw k R∈ and measurement noise are all 

assumed to be white Gauss noise with zero mean. 

In system identification academic, input-output state space 

relation (1) is always rewritten as following innovative form. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

ˆ ˆ1

ˆ

x k Ax k Bu k Ef k Ke k

y k Cx k Du k Gf k e k

 + = + + +


= + + +
     (2) 

where innovation ( )e k is defined as that. 

( ) ( ) ( ) ( ) ( )ˆe k y k Cx k Du k Gf k= − − −       (3) 

where K is the Kalman gain matrix, innovation ( )e k is 

determined by process noise ( ) wnw k R∈ and measurement 

noise ( ) lv k R∈ , here the variance of innovation ( )e k is eσ . 

The advantage of rewriting state space equation (1) as 

innovative form (2) is that the strong consistent estimation of 

innovative form (2) can be identified in closed loop condition 

based on subspace identification theory [6]. In classical 

Kalman filter theory [7], ( )u k and ( )y k  are two 

deterministic variables, then after substituting the definition of 

innovation ( )e k
 

into state space equation with innovation 

form, one closed loop input-output relation is obtained. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

ˆ ˆ1

ˆ

x k A KC x k B KD u k E KG f k Ky k

y k Cx k Du k Gf k e k

 + = − + − + − +


= + + +

 (4) 

where ( )u k and ( )f k can be regarded as two external and 

deterministic input signals, and in equation (4), ( )f k denotes 

the given fault. When output trajectory is given, the expected 

output trajectory is used to quality the output data at future 

time instant. An approximate choice of the control input is 

obtained through minimizing the measurement error, i.e. it 

leads to one problem of designing predictive controller. 

Define state, input and fault as that respectively. 

, ,ɶ ɶA KC B B KD E E KGφ = − = − = −       (5) 

When closed loop system is minimal realization, i.e. 

A KCφ = − is stable, ( ) ( ),x k u k  and ( )y k are all bounded 

at any time instant k . 

3. Output Estimation in Subspace 

Predictive Control 

To study subspace predictive control, the first step is to give 

the future output estimation at future time instant, and the 

output estimation can be computed by using equation (6). As 

the residual is generated in more than one sample sliding 

horizon, i.e. sliding horizon level is [ ]1,k L k− + , L is the 

output horizon level. Similar to derivation of equation (9), the 

time index k  in equation (9) is replaced by time index

1, 1,.......k L k L k− + − + , then we obtain one column vector 

as. 

( ) ( ) ( ), 1 2 ⋯
T

y Ly y k L y k L y k = − + − +   

Similarly define block vector ,k Lu and ,k Le , and let 

[ ]1k L p k L− − + − be past sliding window, p  is past 

horizon level, then output equation is formulated as follows. 
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( )
( )

( )

( )
( )

( )
,

1 1

1 1

1 1 2

ˆ 11

ˆ2 2

ˆ

0

0 0 0

0 0 0

⋮ ⋮

�����������

ɶ ɶ ɶ⋯

ɶ ɶ ɶ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ɶ ɶ⋯ ⋯ ⋯ ⋯

k L

p

p

p

b

p p

p p

p L L

C x k L py k L

y k L C x k L p

y k C x k p

C B C K C B C K CB CK D

C B C K C B C K CB CK D

C B C K C K CB CK D

φ

φ

φ

φ φ φ φ
φ φ φ φ

φ φ φ

− −

− −

− − −

 − − + − +
  − + − − +   =   
  
   −   

 
 
 + 


 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )

1 2

1 2

1 1 2

1

1

01

2 0 0

1

1 0

⋮
ɶ ɶ ɶ⋯

ɶ ɶ ɶ⋯

⋮ ⋮ ⋮ ⋮

ɶ ɶ ɶ ɶ⋯ ⋯ ⋯
⋮

p p

p p

p L L

u k L p

y k L p

f k L

C E C E CE Gu k L e k L

y k L e k L C E C E CE G

u k L

y k L e k C E C E C E CE G

u k

y k

φ φ
φ φ

φ φ φ

− −

− −

− − −





 − − +
 − − + 
  −
    − − +     − − +    × + +   − +       − +      
 
 
 
 
 

( )

( )
( )

( )

1

1

⋮

⋮

p

f k L

f k L

f k

 − +
 
 
 −
 

− + 
 
 
  

 (6) 

Let all block Hankel matrices be that respectively. 

1 1

1 1
,

1 1

1 2

1
,

1

2 3

0 0
,

0 0

0

0

0

0
,

0

ɶ ɶ⋯

ɶ ɶ⋯

⋮ ⋮ ⋮

ɶ⋯ ⋯

ɶ ɶ ɶ ɶ⋯

ɶ ɶ⋯

⋮ ⋮

ɶ⋯ ⋯

ɶ

⋮ ⋮ ⋮ ⋮

⋯

p p

p p
L p
z

p L

p p

p
L p
f

p

L L
y u

L L

C B C K CB CK

C B C K C B C K
H

C B C K

C E C E C E CE

C E C E
H

C E

D

CK CB D
T T

C K C K

φ φ

φ φ φ φ

φ φ

φ φ φ
φ φ

φ

φ φ

− −

− −

− −

− −

−

−

− −

 
 
 =  
 
 
 

 
 
 =  
 
 
 

 
 
 = =
 
 
  

2 3 2 3

0

,

⋯
ɶ ⋯

⋮ ⋮

ɶ ɶ ɶ ɶ⋯ ⋯

L
f

L L L L

G

CE G
T

C B C B D C E C E Gφ φ φ φ− − − −

   
   
   =
   
   
      

      (7) 

Combining input-output within past sliding window as 

( ) ( ) ( ) T
z k u k y k =    

Collecting input-output measured data sequence within past 

sliding window as. 

( ) ( ) ( ), 1 2 ⋯
T

k L pz z k L p z k L p z k L−  = − − + − − + −   

Using above defined notations, a simplified form 

corresponding to equation (13) is obtained. 

,,
, , , , , , ,

, ,,,
, ,

, ,

L pL p L L
k L k L z k L p u k L k L p f k L k Lf

k L p k L pL pL p L L
k L z u f k Lf

k L k L

y b H z T z H f T f e

z f
b H T H T e

z f

− −

− −

= + + + + +

   
  = + + +            

 (8) 

Then equation can be rewritten as. 

,,
, , , , ,

������� �������
z f

L pL p L L
k L k L z u k L p f k L p k Lfy b H T z H T f e

ϕ ϕ

+ +  = + + +     (9) 

Then 
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, , , , ,k L k L z k L p f k L p k Ly b z f eϕ ϕ+ += + + +  

where equation is our output estimation for subspace 

predictive control, but ,k L pz + includes vector ,k Ly , so one 

suitable matrix transformation is used to eliminate vector 

,k Ly  in ,k L pz + . After completing these derivations, our 

obtained output estimation can be substituted into objection 

function in the next subspace predictive control strategy. 

4. Dual Decompose for Subspace 

Predictive Control 

As subspace predictive control belongs to predictive control 

field [8], so the future control input is solved as an optimal 

solution of an optimization problem. Assume the expected 

output trajectory is priori known as. 

, 1 ⋯
T

T T
k L k L kγ γ γ− + =              (10) 

The common used quadratic objective function is given in 

predictive control field. 

( ) ( ) ( )
,1 , , , 1 , , ,

ˆ ˆ
k L

T T
k L k L k L k L k L k LJ u y Q y u Ruγ γ= − − +  (11) 

where two matrices 1Q and R are positive definite weight 

matrices, and the decision variables are combined as follows. 

( ) ( ), 1 ⋯
T

T T
k Lu u k L u k = − +   

But in objective function, only the second term is the 

explicit function of future control input, and the first term 

includes ,k Lu  implicitly. To expand equation, we need to 

expand the first term as an explicit function about. From 

equation (11), the predictions with respect to measured data 

sequence at future time instant are derived 

,,
, , , ,

ˆ L pL p L L
k L z k L p f k L p u k Lfy H z H T f T z− + = + +

 
 (12) 

Above ,k L pz − includes past input-output measured data 

sequence, but ,k L pz −  also includes future control input ,k Lu , 

so we rewrite above output predictions as follows. 

( )
( )

( )

( )
( )

( )
( )
( )

( )

,
,

2 3

,

2 3

0 0 0ˆ ˆ1 1

0 0ˆ ˆ2 2

ˆ ˆ0

0 0 1

0 0 2

⋯

⋯

⋮ ⋮⋮ ⋮

⋯

⋯
ɶ ⋯

⋮ ⋮ ⋮

ɶ ɶ ⋯

L p
z k L p

L L

L p L
ff

L L

y k L y k L

Ky k L y k L
H z

y k y kC K C K

D u k L

CB u k L
H T

u kC B C B D

φ φ

φ φ

−

− −

− −

    − + − +
    − + − +    = +
    
    
        

   − +
   − +    + +

   
  
     

,k L pf +

             (13) 

Transferring and reformulating terms to give 

( )
( )

( )

( )
( )

( )

,
,

2 3 2 3

,
,

1 0 0 0 0ˆ 1 1

1 0 0 0ˆ 2 2

ˆ1

⋯ ⋯
ɶ⋯ ⋯

⋮ ⋮ ⋮ ⋮⋮ ⋮

ɶ⋯ ⋯

L p
z k L p

L L L L

L p L
f k L pf

Dy k L u k L

K CBy k L u k L
H z

y k u kC K C K C B C K D

H T f

φ φ φ φ

−

− − − −

+

      − + − +
      − + − +      = +
      
      

− −             

 +
 

   (14) 

So the explicit relation between future output predictions and future control input ,k Lu is obtained. 

1

,
, ,

,
2 3

2 3

,
,

0 0
1 0 0 0 0

1 0
ˆ

1

⋯
⋯ ɶ ⋯
⋯ ⋮ ⋮

⋮ ⋮ ɶ ⋯
⋯

L p
z k L p k L

k L
L L

L L

L p L
f k L pf

D

CB
H z uK

y

C B C K D
C K C K

H T f

φ φ
φ φ

−

−

− −
− −

+

  
   
    +   = ×   
     
 − −     +

  

            (15) 

Introducing three matrices to simplify above equation. 

, 1 , 2 , 3 ,
ˆ
k L k L p k L k L py z u f− += Λ + Λ + Λ                                 (16) 
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The construction of three matrices 1 2 3, ,Λ Λ Λ is to multiply some certain matrix on , , ,, ,k L p k L k L pz u f− + respectively. After 

substituting equation (16) into objective function for predictive control theory, one following optimization problem is 

established. 

( ) ( ) ( )
,

,

1 , 1 , 2 , 3 , , 1 1 , 2 , 3 , , ,min
k L

k L

T T
k L k L p k L k L p k L k L p k L k L p k L k L

u
J u z u f Q z u f u Ruγ γ− + − += Λ + Λ + Λ − × Λ + Λ + Λ − +     (17) 

Reformulating above equation to get. 

( ) ( ) ( ), , ,
,

1 , 2 1 2 , 1 1 2 3 1 2 , 1 2 ,min 2
k L k L p k L p

k L

T T T T T T
k L k L k L k L

u
J u u Q R u z Q f Q Q uγ

− +
= Λ Λ + + Λ Λ + Λ Λ − Λ            (18) 

For solving optimization problem (18), we proposed a fast 

gradient algorithm to solve a special case with limited input 

amplitude in our published paper [8]. Here we extend that 

special case to more general case, which includes equality and 

inequality constrain conditions. To solve an optimization 

problem about predictive controller with equality and 

inequality constrain conditions, the dual decomposition is 

used to convert the former constrained optimization into an 

unconstrained optimization. 

To rewrite optimization problem (18) as its more general 

form, let 

( ), ,

2 1 2

1 1 2 3 1 2 , 1 2

1

2

2
k L p k L p

T

T T T T T
k L

Q R H

z Q f Q Q gγ
− +

Λ Λ + =

Λ Λ + Λ Λ − Λ =
 

One regularization term is added in equation (18), and its 

advantage is to guarantee the decision variables not abrupt in 

the whole optimization process, i.e. one constrained 

optimization problem is given as follows. 

( )
,

,

2 , , , , 1

1 , 1 2 , 2

1
min

2

,

k L
k L

T T
k L k L k L k L

u

k L k L

J u u Hu g u Mu m

subject to A u B A u B

λ= + + −

= ≤
 (19) 

Introducing Lagrange multiplier vector 1 2 3, ,µ µ µ  to 

obtain the Lagrange function of the above dual problem. 

( ) ( ) ( )
,

,1 2 3

, , 1 1 , 1 2 2 , 2 3 ,1,, 0,

1
sup inf

2 k L
k L

T T
k L k L k L k L k L

u
u Hu g u A u B A u B Mu m

αµ µ µ
λ α µ µ µ α

≥

 + + + − + − + − − 
 

      (20) 

Reformulating above Lagrange function to get. 

( )
,

,1 2 3

1 1 2 2 3 , , 1 1 2 2 3 31
, 0,

1
sup inf inf

2 k L
k L

T
k L k L

u
A A M g u u Hu B B m

αµ µ µ
µ µ µ µ µ µ λ α µ α

≥

    + + + + − − − + −      
      (21) 

Firstly taking infimum operation onα . 

[ ] [ ]( )

[ ]
[ ] [ ]( )

3 31

3
3

inf inf

0
inf

i

i i i
i

i i i
i

if

else

α α

α

λ α µ α λ α α µ

µ λ
λ α α µ ∞

   − = −     
  

 ≤  = − =     −∞  

∑

∑

 (22) 

where [ ]
i

denotes the element of an vector, to take 

minimization operation on future control input ,k Lu , set 

[ ] [ ]1 2 1 2 1 2 3, ,
TT T

A A M B B m µ µ µ µΑ = Β = =     

Then minimizing objective function (38) on future control 

input ,k Lu ,, we have 

( ) ( ) ( )
,

,

1
, ,

1 1
inf

2 2k L
k L

T T
T T T T

k L k L
u

g u u Hu g H gµ µ µ− Α + + = − Α + Α + 
 

 (23) 

The dual problem is that 

( ) ( )11
sup

2

T
T T Tg H g

µ
µ µ µ− − Α + Α + − Β 

 
    (24) 

Define negative dual function as. 

( ) ( ) ( )11

2

T
T T Tf g H gµ µ µ µ−= Α + Α + + Β  

As ( )f µ includes quadratic term and linear term coming 

from semi-definite Hessian matrix, then the gradient of ( )f µ
is computed as. 

( ) ( )1 Tf H gµ µ−∇ = Α Α + + Β  

From min-max theorem in convex optimization theory, the 

minimum Lipschitz constant ζ of ( )f µ∇ is that. 

1

2
Hζ −= Α Α  
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Nearest neighbor gradient algorithm is used to solve dual 

problem (41), and its iterative process is given as follows. 

( ) ( )1 11 1
;

2

t t t t t t tt
v v f

t
µµ µ µ µ µ

ζ
− +  −= + − = Ρ − ∇ −  

 (25) 

where t denotes the iteration step, µΡ is Euclidean projection 

operation of µ . New iteration value 
1tµ +

is a negative 

gradient projection on the basis of the last iteration value. The 

control input of the original optimization problem is set. 

( )1
,
t T t
k Lu H gµ−= −Α −  

Substituting tv  into ( )f µ∇
 

to get. 

( ) ( )1
, , ,

1

2

t t t t
k L k L k L

t
f v u u u

t

−− ∇ = −Α + − + Β + 
     (26) 

Set 

( )1
, , , , 1 2 3

1
,

2

Tt t t t
k L k L k L k L

t
u u u u

t
µ µ µ µ−−= + − =   +

 

Parallel processing equation (26) to give 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

1 1
, , , , ,

1 1
1 1 1 1 1 , 1

1 1
2 2 2 2 2 , 2

1 1
3 3 3 3 ,

1
,

2

1 1

2

1 1
max 0,

2

1 1
min ,max ,

2

t T t t t t t
k L k L k L k L k L

t t t t T t
k L

t t t t T t
k L

t t t t T t
k L

t
u H g u u u u

t

t
A u B

t

t
A u B

t

t
M u m

t

µ

µ µ µ µ
ζ

µ µ µ µ
ζ

µ λ λ µ µ µ
ζ

− −

+ −

+ −

+ −

−= −Α − = + −
+

−= + − + −
+

 −= + − + − + 

  − = − + − + −  +   

                      (27) 

5. Conclusion 

In this paper, the problem of subspace predictive control is 

considered under fault, and the statistical distribution is 

derived for residual vector. After formulating the original state 

space model as the measured input-output data sequence, one 

gradient algorithm is applied to obtain predictive controller by 

solving one optimization problem with equality and inequality 

constrains. And the dual optimization theory is used to transfer 

the original constrain optimization problem as one 

unconstrain optimization problem. The asymptotic analysis 

about gradient algorithm in subspace predictive control is our 

next subject. 
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